
Intelligent Raido Resouce Managment: Learning
And Optimization

Qingjiang Shi

Tongji University

Nov.16, 2019 @ Hangzhou

1 / 39



Research Group

2 / 39

Hao Yu, Master Siyuan Lu, Master

Jintai Yang, Baidu



Introduction

• Radio resource management (RRM) is a large-scale control problem involving

• transmit power
• beamforming
• time-frequency channel
• modulation-coding scheme
• ......

• The objective is to utilize the limited radio resources to improve

• network services
• quality of service (QoS)
• overall system performance

• RRM with traditional rule-based algorithms is particularly challenging

• numerous network functionalities operating at different timescales
• unprecedented levels of complexity in the 5G/B5G mobile system
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Introduction

RRM from a bigdata perspective

• Networks are data-rich environments

• RRM nowadays derives little insight from such data

• Data-driven approach is promising

Conventional Approach

• Simple rules

• Opt. methods with high complexity

• Become increasingly impractical as

• more dynamic and diverse traffic
• more complex netw. architecture
• more resource structures

AI-Empowered Approach

• Self-learning and adaptive based on
user/channel conditions

• Decision quality improves via learning

[1] D. Calabrese, et. al., “Learning radio resource management in RANs: framework, opportunities, and challenges,” IEEE
Communications Magazine, vol. 56, no. 9, pp. 138-145, Sept. 2018.
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Introduction

The potential applications of AI in wireless networks

• Complex modeling: modeling relashionships of KPIs and network parameters

• Complex problem solving: channel scheduling, power control, beamforming

• AI as communication modules: demodulation/decoding, or the whole

In this talk, we cover

• Data-driven network optimization

• Learning-based massive beamforming
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Data-Driven Network Optimization

1 Data-Driven Network Optimization
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Data-Driven Network Optimization

Motivation

• Bad coverage if RSRP≤ −105dBm
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Data-Driven Network Optimization

Challenge

• Data-driven network optimization

• Where is data from?
• What is performance metric?
• How to do parallel optimization?

8 / 39

Math Prob: find x ∈ Rn s.t.
fi(x) ≥ Γ, ∀i = 1, 2, . . . , N

• both n and N are very large

• fi is a black-box function



Data-Driven Network Optimization

Problem statement

• Suppose all problematic areas involve m grid points and n base stations

• The number of RF parameters is defined to be d , 4n.

• We use x ∈ Rd to denote the RF parameters to be optimized.

• Let Ni denote the number of MRs at the i-th grid and N ,
∑m
i=1 Ni.

• The objective to be optimized is given by

F (x) , −
1

N

m∑
i=1

Ni

2

(
1

1 + e(−λ1(fi(x)−Γ1))
+

1

1 + e(−λ2(gi(x)−Γ2))

)
(1)

where both fi(x): RSRP and gi(x): SINR

• modeled from data
• have no analytical form, and are nondifferentiable
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Data-Driven Network Optimization

The BCD Method for Small-scale Problems

• The problem fits into the BCD framework due to the separable constraints.

• Let Ci denotes the box constraints on xi.

• The problem can be equivalently as

min
x1,··· ,xn∈C1×···×Cn

F (x1, · · · ,xn)
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Data-Driven Network Optimization

The BCD Method for Small-scale Problems

• In each iteration t, we randomly select an it ∈ {1, 2, · · · , n} and update xit via

x
(t+1)
it

= arg min
xit

F
(
x

(t)
1 , · · · ,x(t)

it
,xit ,x

(t)
it+1, · · · ,x

(t)
n

)
.

• In our simulations the update of xit is done inexactly, i.e., by

x
(t+1)
it

= PCit {x
(t)
it
− αt∇itF (x(t))}.

• ∇itF (x(t)) is approximately and numerically calculated

• αt is chosen among {10, 2, 1, 10−1, 10−2, . . . , 10−7}
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Data-Driven Network Optimization

Experiment results

• Case 1 : 28 Cells

(a) Initial RSRP values (b) Optimized RSRP values

Figure: The RSRP results before RF tuning and after in the case of 28 cells
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Data-Driven Network Optimization

Experiment results

• Case 2 : 293 Cells

(a) Initial RSRP values (b) Optimized RSRP values

Figure: The RSRP results before RF tuning and after in the case of 293 cells
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Data-Driven Network Optimization

Problem reformulation for ADMM

• Define

Fi(x) , −
Ni

2N

(
1

1 + e(−λ1(fi(x)−Γ1))
+

1

1 + e(−λ2(gi(x)−Γ2))

)
(2)

• Partition the grid points into K subsets, Ck’s, each with almost equal size

• Denote the number of grids in subset Ck by nk, i.e., nk = |Ck|

• Define Fk(x) ,
∑
i∈Ck

Fi(x)
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Data-Driven Network Optimization

Consensus constraints under global mapping

• The RF parameter optimization problem is reformulated as (consensus form)

min
{xk},{z̃k}

K∑
k=1

Fk(xk)

s.t. xk = z̃k, ∀k

(3)

where

• xk: part of cell parameters related to Fk

• z̃: a global variable with z̃k corresponding to the parameters in xk
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Data-Driven Network Optimization

ADMM algorithm

• Furthermore, let us define
Lkρ(xk,yk, z̃k)) , Fk(xk) + yTk

√
wk(xk − z̃k) + (ρ/2)wk ‖xk − z̃k‖22

• Then the main iteration of the ADMM iteration is as follows

xt+1
k = arg min

xk∈Ck
(Fk(xk) +

(
ytk
)T √

wk(xk − z̃tk) + (ρ/2)wk
∥∥xk − z̃tk

∥∥2

2
) (4)

yt+1
k = ytk + ρ

√
wk(xt+1

k − z̃t+1
k ) (5)

• Note that the update of xk and yk can be carried out in parallel.

[2] S. Boyd, et. al., Distributed optimization and statistical learning via the alternating direction method of multipliers,
Foundations and Trends in Machine Learning, 3(1):1–122, 2011
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Data-Driven Network Optimization

PDD—a variant of ADMM

Algorithm 1 Penalty Dual Decomposition (PDD)

initialize τ < 1, ρ, x0
k = argminxk

(Fk(xk));
set iter = 0 and η0 =MAX INT
while iter < MAX ITER do

update xk, ∀k, by using BCD
update z̃k, ∀k
hiter =

∑K
k=1 ‖xk − z̃k‖2

if hiter <= ηiter then
update yk, ∀k

else
increment ρ

end if
iter = iter + 1
ηiter = τ min(ηiter−1, hiter−1)

end while

[3] Q Shi, M Hong, X Fu, TH Chang, Penalty dual decomposition method for nonsmooth nonconvex optimization, submited to
IEEE TSP.
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Data-Driven Network Optimization

Architecture of PDD on Spark

      ,z
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Data-Driven Network Optimization

Cell Partition-based Parallel (CPP) Algorithm

• Clearly, each grid point can be interfered by neighboring cells.

• However, it is more desirable to divide the large-scale problem into small subproblems
based on cell partition.

• The key to such kind of method is to partition the cells so that the interference impact is
as small as possible.

• Moreover, to balance the load, size-constrained K-mean is proposed.
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Data-Driven Network Optimization

Experiment results

Clustering # Partition # Cell Running Time Score

K-Means
10 154 312s 0.8676
15 392 1133s 0.8775
20 579 2844s 0.873

Size-cons. K-means

10 154 235s 0.854
20 579 1600s 0.837
30 1413 3588s 0.861
40 7670 15495s 0.903
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Data-Driven Network Optimization

Experiment results

(a) Initial RSRP values (b) RSRP by CPP/PDD

Figure: The RSRP results before CPP/PDD and after in the case of 7670 cells
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Data-Driven Network Optimization

Remarks

• PDD yields better score than CPP but CPP is much more efficient

• We can run one round BCD to improve the performance of the PDD/CPP

• For example, the performance of CPP can be improved as shown below

Partition Cell Running Time Score before BCD Score

10 154 642s 0.88 0.928
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Learning-based Massive Beamforming

2 Learning-based Massive Beamforming
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Learning-based Massive Beamforming

Motivation

• A basic problem of massive MU-MIMO is beamformer design to achieve downlink system
throughput maximization

• The classical WMMSE algorithm has complexity of O(N3
T )

• Deep learning can well approximate iterative optimization methods with lower complexity

• We here consider using deep learning to learn ‘WMMSE’ in the massive MU-MIMO case

[4] H. Sun, X. Chen, Q. Shi, et. al., “Learning to optimize: training deep neural networks for interference management,”
IEEE Trans. Signal Processing, vol. 66, no. 20, pp. 5438-5453, Oct.15, 2018.
[5] W. Xia, G. Zheng, Y. Zhu, et. al., “Deep learning based beamforming neural networks in downlink MISO systems,”
2019 IEEE ICC Workshops, pp. 1-5.
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Learning-based Massive Beamforming

Problem statement

• Consider a single cell K-users massive MIMO system

• The BS is equipped with NT antennas, each user with NR antennas.

• The received signal yk ∈ CNR×1 at user k can be written as

yk = Hkx + nk

= HkVksk︸ ︷︷ ︸
desired signal of user k

+
K∑

j=1,j 6=k
HkVjsj

︸ ︷︷ ︸
multi-user interference

+nk, ∀k.

where

• Hk ∈ CNR×NT : the channel matrix from the BS to user k
• Vk ∈ CNT×dk : the transmit beamformer of user k
• sk ∈ Cdk×1: the transmitted symbols of user k
• nk ∈ CNR×1: the AWGN with distribution ∼ CN (0, σ2

kI)
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Learning-based Massive Beamforming

Problem statement

• The system weighted sum-rate maximization can be written as follows

max
{Vk}

K∑
k=1

αkRk

s.t.
K∑
k=1

Tr (VkV
H
k ) ≤ Pmax,

where

• Pmax denotes the BS power budget
• the weight αk represents the priority of user k
• Rk is the rate of user k given by

Rk , log det

I+HkVkV
H
k HH

k

∑
m6=k

HkVmVH
mHH

k +σ2
kI

−1 .
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Learning-based Massive Beamforming

WMMSE

• Equivalent problem

Rk , log det

I+HkVkV
H
k HH

k

∑
m 6=k

HkVmVH
mHH

k +σ2
k

∑K
k=1 Tr (VkV

H
k )

Pmax
I

−1 .

• Define H̃k =

√
Pmax

σ2
k

Hk

Rk , log det

I+H̃kVkV
H
k H̃H

k

∑
m6=k

H̃kVmVH
mH̃H

k +
K∑
k=1

Tr (VkV
H
k )I

−1 .

27 / 39



Learning-based Massive Beamforming

WMMSE

• Define

Ek , (I−UH
k HkVk)(I−UH

k HkVk)H

+
∑
m 6=k

UkHkVmVH
mHH

k UH
k +

K∑
i=1

Tr (VkV
H
k )UH

k Uk

• Equivalent WMMSE form

min
{Wk,Uk,Vk}

K∑
k=1

(log det(Wk)− Tr (WkEk))

• Update of Vk in WMMSE

Vk =

 K∑
j=1

αjTr (UjWjU
H
j )I +

K∑
j=1

αjH
H
j UjWjU

H
j Hj

−1

αkH
H
k UkWk

• The complexity of each iteration is at least O(N3
T ).
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Learning-based Massive Beamforming

Technical Challenges For Deep Learning

• Challenge 1: High dimensional matrix, not easy to train

• Challenge 2: The weights αk’s often change with time

• Challenge 3: Sometimes only single stream transmission is scheduled for some user
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Learning-based Massive Beamforming

The Proposed Solution to Challenge 1: Reduced WMMSE
(R-WMMSE)

• Define H ,
[
HH

1 HH
2 . . .HH

K

]H ∈ CKNR×NT

• It can be proven Vk = HHXk for some Xk ∈ CKNR×dk

• Update of Xk is given by

Xk =

 K∑
j=1

αjTr (UjWjU
H
j )(HHH) +

K∑
j=1

αjHHH
j UjWjU

H
j HjH

H

−1

×

αkHHH
k UkWk

• R-WMMSE with O(K3) Vs. the classical WMMSE with O(N3
T )
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Learning-based Massive Beamforming

Learning Scheme

• Supervised Learning

• CNN
• DNN

• Unsupervised Learning

L(θ;h) , −
K∑
k=1

log det

I+HkVkV
H
k HH

k

∑
m 6=k

HkVmVH
mHH

k +
K∑
k=1

Tr (VkV
H
k )I

−1 .

where Vk = Net(θ;h) and h denotes the input channels

• Supervised (pre-training) + Unsupervised (further optimization) learning
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Learning-based Massive Beamforming

Learning Scheme

Algorithm 2 Supervised + Unsupervised Learning Algorithm

1: Data preprocessing.
2: Divide the data set into training set and test set.
3: for i = 1 : num epoch do
4: Perform training epoch with Huber loss.
5: end for
6: Perform training epoch with unsupervised loss for one epoch.
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Learning-based Massive Beamforming

Design of Input and Output

• The update of Xk is

Xk =

 K∑
j=1

Tr (UjWjU
H
j )(HHH) +

K∑
j=1

HHH
j UjWjU

H
j HjH

H

−1

HHH
k UkWk

• Input

Input Dimension
Hk 2× (KNR ×NT )

HHH 2× (KNR ×KNR)
HHH(exploit symmetry) KNR ×KNR

• Output

Output Dimension
Vk 2× (NT × dk)
Xk 2× (KNR × dk)

Uk and Wk 2× (NR × dk + dk × dk)
Uk and Wk (exploit symmetry) 2× (NR × dk) + dk × dk

• For regression, usually the smaller the size of output/input, the easier the training
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Learning-based Massive Beamforming

The Proposed Solution To Challenge 2

• For varying αk’s, the network structure should be carefully redesigned

(a) Merge weight into input
as channels

(b) Concatenate weight after conv.

Figure: Methods of merging weights into the network.

• Finally we take H̃H̃H as the network input

where H̃k =
√
αkHk and H̃ ,

[
H̃H

1 H̃H
2 . . . H̃H

K

]H
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Learning-based Massive Beamforming

The Proposed Solution To Challenge 3

• The number of streams dk is also varying but the network output is fixed.

• Uk and Wk should contain zeros when dk = 1.

• An indexNet (upper branch) is proposed for end-to-end training

• At the testing stage, ‘zero elements’ should be assigned with 0 at the last layer

35 / 39



Learning-based Massive Beamforming

Simulation Setup

• NR = 2

• Case 1: NT = 8,K = 2

• Case 2: NT = 8,K = 4

• Case 3: NT = 32,K = 12

• αk follows uniform distribution [0 1]

• dk = 1 (or 2) with probability 0.5
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Learning-based Massive Beamforming

Experiment Results

(a) Average running time (b) Average accuracy

Figure: Comparison of CNN with R-WMMSE and zero-forcing (ZF)
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Learning-based Massive Beamforming

Experiment Results

Figure: Unsupervised learning further improves supervised learning
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Summary

Summary

• We have presented

• data-driven network optimization
• learning-based massive beamforming
• network-level performance prediction
• reinforcement learning-based MCS scheduling

• Our experiment results show that machine learning is a powerful tool for RRM, which
sometimes can replace the role of optimization methods.

Thanks for your attention!
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