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Introduction

e Radio resource management (RRM) is a large-scale control problem involving

e transmit power

e beamforming

e time-frequency channel

e modulation-coding scheme

e The objective is to utilize the limited radio resources to improve

e network services
o quality of service (QoS)
e overall system performance

e RRM with traditional rule-based algorithms is particularly challenging

e numerous network functionalities operating at different timescales
o unprecedented levels of complexity in the 5G/B5G mobile system
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Introduction

RRM from a bigdata perspective

e Networks are data-rich environments

e RRM nowadays derives little insight from such data

e Data-driven approach is promising

® Conventional Approach

e Simple rules

e Opt. methods with high complexity

e Become increasingly impractical as
e more dynamic and diverse traffic
e more complex netw. architecture
e more resource structures

4

@ Al-Empowered Approach

e Self-learning and adaptive based on
user/channel conditions

e Decision quality improves via learning

Reinforcement
Learning

Deep |~ Transfer
Learning Learning

Big Data

[1] D. Calabrese, et. al., “Learning radio resource management in RANs: framework, opportunities, and challenges,” IEEE
Communications Magazine, vol. 56, no. 9, pp. 138-145, Sept. 2018.
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Introduction

The potential applications of Al in wireless networks
e Complex modeling: modeling relashionships of KPIs and network parameters
e Complex problem solving: channel scheduling, power control, beamforming

e Al as communication modules: demodulation/decoding, or the whole
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In this talk, we cover

e Data-driven network optimization

e Learning-based massive beamforming
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Data-Driven Network Optimization

o Data-Driven Network Optimization
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Data-Driven Network Optimization

Motivation
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e Bad coverage if RSRP< —105dBm
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Challenge
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e Data-driven network optimization Math Prob: f'nd z € R" s.t.
filz) >T,Vi=1,2,...,N
e Where is data from? both dN |
e What is performance metric? e both n an are very large
e How to do parallel optimization? e f; is a black-box function
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Data-Driven Network Optimization

Problem statement

e Suppose all problematic areas involve m grid points and n base stations
e The number of RF parameters is defined to be d £ 4n.

o We use x € R? to denote the RF parameters to be optimized.

e Let N; denote the number of MRs at the i-th grid and N £ 27;1 N;.

e The objective to be optimized is given by

s 1 " N; 1 1
F(x) = N Z; 2 \1 + e(=21(fi(x)—T1)) + 1+ e(—A2(gi(x)—I2)) @)

where both f;(x): RSRP and g;(x): SINR

e modeled from data
« have no analytical form, and are nondifferentiable
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The BCD Method for Small-scale Problems

e The problem fits into the BCD framework due to the separable constraints.
e Let C; denotes the box constraints on z;.
e The problem can be equivalently as

min F(x1, ,Xn)
X1, X €C1L XX Cpy
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The BCD Method for Small-scale Problems

o In each iteration ¢, we randomly select an ¢; € {1,2,--- ,n} and update x;, via
(t+1) _ ; (t) ®) . L® (t)
X;, 7arg1)1;1i1:1F Xy Xy, Xy Xy Lgy X )

e In our simulations the update of x;, is done inexactly, i.e., by

x{FH = Pe,, {xl(.:) — Vi, F(x")}

it

. V“F(x“)) is approximately and numerically calculated

e ay is chosen among {10,2,1,1071,1072,...,10~7}
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Data-Driven Network Optimization

Experiment results

e Casel: 28 Cells
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Figure: The RSRP results before RF tuning and after in the case of 28 cells
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Data-Driven Network Optimization

Experiment results

e Case 2 : 293 Cells
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Figure: The RSRP results before RF tuning and after in the case of 293 cells
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Problem reformulation for ADMM

e Define

ey a Vi 1 1
R = —on (1 e Mo T T Ty e(—mgi(x)—Fz))) 2)

e Partition the grid points into K subsets, C}'s, each with almost equal size

e Denote the number of grids in subset C}, by ng, i.e., ng = |Ck|

e Define Fi(x) £ >icoy, Fi(x)
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Data-Driven Network Optimization

Consensus constraints under global mapping

e The RF parameter optimization problem is reformulated as (consensus form)

K
min Fr(x
{xk},{sk},; kOo) (3)
s.t. Xk = ik,Vk

where

o Xj: part of cell parameters related to F},
o Z: a global variable with 2z corresponding to the parameters in xy
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ADMM algorithm

e Furthermore, let us define
LE(xp, yio, 21)) 2 Fr(xi,) + yF /o (xi, — Z¢) + (p/2)wy [Ixs, — 212

e Then the main iteration of the ADMM iteration is as follows

. T _ 5
xpth = argencnn(Fk (xk) + (¥h) " Vwr(xp — 2) + (p/2)wr ||xx — zli”i) (4)
Xk k

Yyt =yl + oy (xptt — 2 (5)

e Note that the update of x; and yj can be carried out in parallel.

[2] S. Boyd, et. al., Distributed optimization and statistical learning via the alternating direction method of multipliers,
Foundations and Trends in Machine Learning, 3(1):1-122, 2011
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PDD—a variant of ADMM

Algorithm 1 Penalty Dual Decomposition (PDD)

initialize T < 1, p, x) = argmin, (Fi(xz));
set iter =0 and ng = MAX_INT
while iter < MAX_ITER do
update xi, Vk, by using BCD
update 2, Vk
hiter = Yy 1% = Zill,
if hiter <= Niter then
update yi, Vk
else
increment p
end if
iter = iter + 1
Niter = T min(niterfh hite’r‘fl)
end while

[3] Q Shi, M Hong, X Fu, TH Chang, Penalty dual decomposition method for nonsmooth nonconvex optimization, submited to
IEEE TSP.
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Architecture of PDD on Spark
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Cell Partition-based Parallel (CPP) Algorithm

o Clearly, each grid point can be interfered by neighboring cells.

e However, it is more desirable to divide the large-scale problem into small subproblems
based on cell partition.

e The key to such kind of method is to partition the cells so that the interference impact is

as small as possible.

e Moreover, to balance the load, size-constrained K-mean is proposed.
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Data-Driven Network Optimization

Experiment results

Clustering 7# Partition  # Cell  Running Time Score

10 154 12s 0.8676

K-Means 15 392 1133s 0.8775

20 579 2844s 0.873

% 570 600 0.837

. s .

Size-cons. K-means 30 1413 35885 0.861
40 7670 15495s 0.903
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Data-Driven Network Optimization

Experiment results

Location: Xiamen, China
# of cells: 7670
# of grids: 188,881

Qp!imized RSRP status._ 4

Location: Xiamen, China
# of cells: 7670
# of grids: 188,881

Initial RSRP status

(a) Initial RSRP values (b) RSRP by CPP/PDD

Figure: The RSRP results before CPP/PDD and after in the case of 7670 cells
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Data-Driven Network Optimization

Remarks

e PDD yields better score than CPP but CPP is much more efficient

e We can run one round BCD to improve the performance of the PDD/CPP

e For example, the performance of CPP can be improved as shown below

Partition Ce Running Time Score before BCD Score
10 154 642s 0.88 0.928
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Learning-based Massive Beamforming

e Learning-based Massive Beamforming
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Learning-based Massive Beamforming

Motivation

e A basic problem of massive MU-MIMO is beamformer design to achieve downlink system
throughput maximization

e The classical WMMSE algorithm has complexity of O(N3,)

e Deep learning can well approximate iterative optimization methods with lower complexity
e We here consider using deep learning to learn ‘WMMSE' in the massive MU-MIMO case
[4] H. Sun, X. Chen, Q. Shi, et. al., “Learning to optimize: training deep neural networks for interference management,”

IEEE Trans. Signal Processing, vol. 66, no. 20, pp. 5438-5453, Oct.15, 2018.
[5] W. Xia, G. Zheng, Y. Zhu, et. al., “Deep learning based beamforming neural networks in downlink MISO systems,”

2019 IEEE ICC Workshops, pp. 1-5.
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Learning-based Massive Beamforming

Problem statement

e Consider a single cell K-users massive MIMO system
e The BS is equipped with N antennas, each user with N antennas.

e The received signal y;, € CNrR*1 at user k can be written as

Y = Hgx+ny

K
= Hi Vs, + Z H,V;s; +4nyg,Vk.
— j=1,j#k

desired signal of user k

multi-user interference

where

e H; € CNrRXNT: the channel matrix from the BS to user k
o V€ CNTXdk: the transmit beamformer of user k

o s, € C%*1: the transmitted symbols of user k

o nj, € CNrXL: the AWGN with distribution ~ CA/(0,021)
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Learning-based Massive Beamforming

Problem statement

e The system weighted sum-rate maximization can be written as follows

K
max ay Ry
{Vi} kzjl

K
s.t. Z Tr (VkV,?) < Ppaz,
k=1

where

o Ppaz denotes the BS power budget
o the weight oy represents the priority of user k
e Ry is the rate of user k given by
-1
Ry, &logdet [ I+H,V, VIH[ | Y HyV, VEH 4071
m#k
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WMMSE

e Equivalent problem

QZk—l Tr (VkV )

Ry, £logdet [ I+H,V, VIH{ | Y HyV,. VEH[ 40 I
m;ék P‘IHG.I
e Define I:Ik = Pmizasz
Tk
I —1
Ry, £logdet | I+H, Vi VEHT | Y H,V,, VIR +> " Tr (Ve VI
m+#k k=1
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WMMSE

e Define

Ep 2 (I-UfH V(I - UH, V)P

K
+ > UHp V. VEHUT + > T (v, ViHufu,
m#k i=1
e Equivalent WMMSE form
K
min log det(Wg) — Tr (WiEy
{Wp, Uk, Vi } kz:: ( 2
e Update of Vi in WMMSE
K K -1
Vi = (Do Tr(U;W,;UNI+ > o HIU;W,;UH; | o HI U, Wy
j=1 Jj=1

The complexity of each iteration is at least O(N%).
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Technical Challenges For Deep Learning

e Challenge 1: High dimensional matrix, not easy to train
e Challenge 2: The weights ay's often change with time

e Challenge 3: Sometimes only single stream transmission is scheduled for some user

29/39



Learning-based Massive Beamforming

The Proposed Solution to Challenge 1: Reduced WMMSE
(R-WMMSE)

Define H 2 [HY HE .. HE]" ¢ CKNrXNr

It can be proven V;, = HHZ X, for some X, € CENrxdk
Update of X, is given by

-1

K K

X = (Z o; Tr (U; W; Uy (HEY) + ZajHHijijJHHjHH) x
Jj=1 j=1

a,HHE U, W,

R-WMMSE with O(K?) Vs. the classical WMMSE with O(N%)
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Learning-based Massive Beamforming

Learning Scheme

e Supervised Learning

« CNN
DNN
e Unsupervised Learning
K K -t
L(0;h) £ = logdet | I+H,VEVIH{ | >~ H V, VEHI+ > Tr (v, VNI
k=1 m#k k=1

where Vi, = Net(0; h) and h denotes the input channels

e Supervised (pre-training) 4+ Unsupervised (further optimization) learning

Stagel

Supervised Learning

5 Huber Loss
Rez\ /
Imaglnary I Stage2

7J Unsupervised Learning
Input CL BN Leaky cL BN Leaky Flatten Output
Relu Sum-rate
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Learning-based Massive Beamforming

Learning Scheme

Algorithm 2 Supervised + Unsupervised Learning Algorithm

1:

Data preprocessing.
Divide the data set into training set and test set.
for i = 1 : num_epoch do
Perform training epoch with Huber loss.
end for
Perform training epoch with unsupervised loss for one epoch.
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Design of Input and Output

The update of Xy, is

—1

K K
Xy = [ > T (U;w,;ufyHHY) + > HHIU;W,UfH;H"Y | HH{UW,
j=1 Jj=1
e Input
Input Dimension
Hk 2 X (KNR X NT)
HHY 2 x (KNgr x KNR)
HH (exploit symmetry) KNgr x KNg
e Output
Output Dimension
Vi 2 X (NT X dk)
Xk 2 X (KNR X dk)
Uk ande NRXdk—l-dedk)

2 X (
Uy and Wy, (exploit symmetry) 2 X (Ng X di) + di X di

e For regression, usually the smaller the size of output/input, the easier the training
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The Proposed Solution To Challenge 2

e For varying ay's, the network structure should be carefully redesigned

Input(K channels) %
o Output
Input CL BN Leaky €L BN  Leaky Flatten
al><
Imaginary B
(a) Merge weight into input (b) Concatenate weight after conv.

as channels

Figure: Methods of merging weights into the network.

e Finally we take HH* as the network input
” 72 [\H [H |
where Fly = v/a, Hy and H 2 [Aff BY . AY]
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The Proposed Solution To Challenge 3

e The number of streams dy, is also varying but the network output is fixed.
e U, and Wy, should contain zeros when dj, = 1.

e An indexNet (upper branch) is proposed for end-to-end training

Test

Train

Index Dense
‘iim 'im % I o I

Output Output

Imaginary | I I " o

gt oL BN Ly QBN ey Flen

o At the testing stage, ‘zero elements’ should be assigned with 0 at the last layer
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Learning-based Massive Beamforming

Simulation Setup

Nr =2

Casel: Np =8, K =2

Case2: Np =8, K =14

Case 3: Np =32, K =12

ay, follows uniform distribution [0 1]
dy, =1 (or 2) with probability 0.5
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Learning-based Massive Beamforming

Experiment Results
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Figure: Comparison of CNN with R-WMMSE and zero-forcing (ZF)
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Learning-based Massive Beamforming

Experiment Results
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Figure: Unsupervised learning further improves supervised learning
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Summary

e We have presented

e data-driven network optimization

e learning-based massive beamforming

o network-level performance prediction

e reinforcement learning-based MCS scheduling

e Our experiment results show that machine learning is a powerful tool for RRM, which
sometimes can replace the role of optimization methods.

Thanks for your attention!

39/39



	Data-Driven Network Optimization
	Learning-based Massive Beamforming
	Summary

